​ 目前苟且偷生John Hopcroft实验室 (数据挖掘与机器学习实验室),科研方向为AI4Sci,师从何琨教授

​ GOAL: Awesome_docking


TO BE FINISHED

Paper Reading List

Newly Assigned

NameLink
Structure prediction of protein-ligand complexes from sequence information with Umolhttps://doi.org/10.1101/2023.11.03.565471
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Dockinghttps://arxiv.org/pdf/2210.01776.pdf
Do Deep Learning Models Really Outperform Traditional Approaches in Molecular Docking?https://arxiv.org/pdf/2302.07134.pdf
PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequenceshttps://arxiv.org/pdf/2308.05777.pdf
FABind: Fast and Accurate Protein-Ligand Bindinghttps://arxiv.org/pdf/2310.06763.pdf
Efficient and accurate large library ligand docking with KarmaDockhttps://www.nature.com/articles/s43588-023-00511-5.pdf
Uni-Mol: A Universal 3D Molecular Representation Learning Frameworkhttps://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6402990d37e01856dc1d1581/original/uni-mol-a-universal-3d-molecular-representation-learning-framework.pdf

2023.11.27 UPDATED:

image-20231128223237852

Archived List

Paper Reading List: https://www.notion.so/polowitty/c6199f9c39294210a76a5b47a63ca04b?v=9d8bd30310e345aab48b15b393944948

NameLink
SchNethttps://arxiv.org/abs/1712.06113
Tensor field networkshttps://arxiv.org/abs/1802.08219
N–BODY NETWORKShttps://arxiv.org/abs/1803.01588
DimeNethttps://arxiv.org/abs/2003.03123
Equivariant message passing for the prediction of tensorial properties and molecular spectrahttps://arxiv.org/abs/2102.03150
SphereNethttps://arxiv.org/abs/2102.05013
Geometric Deep Learninghttps://arxiv.org/abs/2104.13478
TORCHMD-NEThttps://arxiv.org/abs/2202.02541
Geometrically Equivariant Graph Neural Networks — A Surveyhttps://arxiv.org/abs/2202.07230
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentialshttps://arxiv.org/abs/2205.06643
e3nnhttps://arxiv.org/abs/2207.09453
Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representationshttps://arxiv.org/abs/2211.03226
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolutionhttps://arxiv.org/abs/2211.15903
SchNetPack 2.0https://arxiv.org/abs/2212.05517
Rethinking SO(3)-equivariance with Bilinear Tensor Networkshttps://arxiv.org/abs/2303.11288
TensorNethttps://arxiv.org/abs/2306.06482
EquiformerV2https://arxiv.org/abs/2306.12059
Artificial Intelligence for Science in Quantum, Atomistic, and Continuum systemshttps://arxiv.org/abs/2307.08423
A functional approach to rotation equivariant non-linearities for Tensor Field Networkshttps://openaccess.thecvf.com/content/CVPR2021/papers/Poulenard_A_Functional_Approach_to_Rotation_Equivariant_Non-Linearities_for_Tensor_Field_CVPR_2021_paper
ON THE UNIVERSALITY OF ROTATION EQUIVARIANT POINT CLOUD NETWORKShttps://arxiv.org/pdf/2010.02449
ICLR22 SEGNNhttps://arxiv.org/abs/2110.02905
ICLR23 Equiformerhttps://arxiv.org/abs/2206.11990
ICML20 Lorentz Group Equivariant Neural Network for Particle Physicshttps://arxiv.org/abs/2006.04780
ICML21 E(n) Equivariant Graph Neural Networkshttps://arxiv.org/abs/2102.09844
ICML22 Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaceshttps://arxiv.org/abs/2206.08362
ICML23 Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonianhttps://arxiv.org/abs/2306.04922
ICML23 eSCN
ICML23 On the Expressive Power of Geometric Graph Neural Networkshttps://arxiv.org/abs/2301.09308
ICML23 Scaling Spherical CNNshttps://arxiv.org/abs/2306.05420
Nature Communications 22 NequIPhttps://www.nature.com/articles/s41467-022-29939-5
Nature Communications 23 Allegrohttps://www.nature.com/articles/s41467-023-36329-y
Nature Machine Intelligence Geometric deep learning on molecular representationshttps://www.nature.com/articles/s42256-021-00418-8
NeurIPS18 3D Steerable CNNshttps://arxiv.org/abs/1807.02547
NeurIPS18 Clebsch–Gordan Netshttps://arxiv.org/abs/1806.09231
NeurIPS19 Cormoranthttps://arxiv.org/abs/1906.04015
NeurIPS20 SE(3)-Transformershttps://arxiv.org/abs/2006.10503
NeurIPS21 GemNethttps://arxiv.org/abs/2106.08903
NeurIPS21 SE(3)-equivariant prediction of molecular wavefunctions and electronic densitieshttps://arxiv.org/abs/2106.02347
NeurIPS22 MACEhttps://proceedings.neurips.cc/paper_files/paper/2022/hash/4a36c3c51af11ed9f34615b81edb5bbc-Abstract-Conference.html
NeurIPS22 So3krateshttps://openreview.net/forum?id=tlUnxtAmcJq
s41586-023-06221-2 Scientific discovery in the age of artificial intelligencehttps://www.nature.com/articles/s41586-023-06221-2

UPDATED: 2023.11.28

image-20231128223458615

Course List

NameSource
AI4SCUPbilibili

FINISHED

Course List

NameSource
CS224W: Machine Learning with GraphsYouTube

更新于 阅读次数

请我喝[茶]~( ̄▽ ̄)~*

Gongbo Zhang 微信支付

微信支付

Gongbo Zhang 支付宝

支付宝