目前苟且偷生在John Hopcroft实验室 (数据挖掘与机器学习实验室),科研方向为AI4Sci,师从何琨教授。
GOAL: Awesome_docking
TO BE FINISHED
Paper Reading List
Newly Assigned
Name | Link |
---|---|
Structure prediction of protein-ligand complexes from sequence information with Umol | https://doi.org/10.1101/2023.11.03.565471 |
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking | https://arxiv.org/pdf/2210.01776.pdf |
Do Deep Learning Models Really Outperform Traditional Approaches in Molecular Docking? | https://arxiv.org/pdf/2302.07134.pdf |
PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences | https://arxiv.org/pdf/2308.05777.pdf |
FABind: Fast and Accurate Protein-Ligand Binding | https://arxiv.org/pdf/2310.06763.pdf |
Efficient and accurate large library ligand docking with KarmaDock | https://www.nature.com/articles/s43588-023-00511-5.pdf |
Uni-Mol: A Universal 3D Molecular Representation Learning Framework | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6402990d37e01856dc1d1581/original/uni-mol-a-universal-3d-molecular-representation-learning-framework.pdf |
2023.11.27 UPDATED:
Archived List
Paper Reading List: https://www.notion.so/polowitty/c6199f9c39294210a76a5b47a63ca04b?v=9d8bd30310e345aab48b15b393944948
Name | Link |
---|---|
SchNet | https://arxiv.org/abs/1712.06113 |
Tensor field networks | https://arxiv.org/abs/1802.08219 |
N–BODY NETWORKS | https://arxiv.org/abs/1803.01588 |
DimeNet | https://arxiv.org/abs/2003.03123 |
Equivariant message passing for the prediction of tensorial properties and molecular spectra | https://arxiv.org/abs/2102.03150 |
SphereNet | https://arxiv.org/abs/2102.05013 |
Geometric Deep Learning | https://arxiv.org/abs/2104.13478 |
TORCHMD-NET | https://arxiv.org/abs/2202.02541 |
Geometrically Equivariant Graph Neural Networks — A Survey | https://arxiv.org/abs/2202.07230 |
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials | https://arxiv.org/abs/2205.06643 |
e3nn | https://arxiv.org/abs/2207.09453 |
Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representations | https://arxiv.org/abs/2211.03226 |
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution | https://arxiv.org/abs/2211.15903 |
SchNetPack 2.0 | https://arxiv.org/abs/2212.05517 |
Rethinking SO(3)-equivariance with Bilinear Tensor Networks | https://arxiv.org/abs/2303.11288 |
TensorNet | https://arxiv.org/abs/2306.06482 |
EquiformerV2 | https://arxiv.org/abs/2306.12059 |
Artificial Intelligence for Science in Quantum, Atomistic, and Continuum systems | https://arxiv.org/abs/2307.08423 |
A functional approach to rotation equivariant non-linearities for Tensor Field Networks | https://openaccess.thecvf.com/content/CVPR2021/papers/Poulenard_A_Functional_Approach_to_Rotation_Equivariant_Non-Linearities_for_Tensor_Field_CVPR_2021_paper |
ON THE UNIVERSALITY OF ROTATION EQUIVARIANT POINT CLOUD NETWORKS | https://arxiv.org/pdf/2010.02449 |
ICLR22 SEGNN | https://arxiv.org/abs/2110.02905 |
ICLR23 Equiformer | https://arxiv.org/abs/2206.11990 |
ICML20 Lorentz Group Equivariant Neural Network for Particle Physics | https://arxiv.org/abs/2006.04780 |
ICML21 E(n) Equivariant Graph Neural Networks | https://arxiv.org/abs/2102.09844 |
ICML22 Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaces | https://arxiv.org/abs/2206.08362 |
ICML23 Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian | https://arxiv.org/abs/2306.04922 |
ICML23 eSCN | |
ICML23 On the Expressive Power of Geometric Graph Neural Networks | https://arxiv.org/abs/2301.09308 |
ICML23 Scaling Spherical CNNs | https://arxiv.org/abs/2306.05420 |
Nature Communications 22 NequIP | https://www.nature.com/articles/s41467-022-29939-5 |
Nature Communications 23 Allegro | https://www.nature.com/articles/s41467-023-36329-y |
Nature Machine Intelligence Geometric deep learning on molecular representations | https://www.nature.com/articles/s42256-021-00418-8 |
NeurIPS18 3D Steerable CNNs | https://arxiv.org/abs/1807.02547 |
NeurIPS18 Clebsch–Gordan Nets | https://arxiv.org/abs/1806.09231 |
NeurIPS19 Cormorant | https://arxiv.org/abs/1906.04015 |
NeurIPS20 SE(3)-Transformers | https://arxiv.org/abs/2006.10503 |
NeurIPS21 GemNet | https://arxiv.org/abs/2106.08903 |
NeurIPS21 SE(3)-equivariant prediction of molecular wavefunctions and electronic densities | https://arxiv.org/abs/2106.02347 |
NeurIPS22 MACE | https://proceedings.neurips.cc/paper_files/paper/2022/hash/4a36c3c51af11ed9f34615b81edb5bbc-Abstract-Conference.html |
NeurIPS22 So3krates | https://openreview.net/forum?id=tlUnxtAmcJq |
s41586-023-06221-2 Scientific discovery in the age of artificial intelligence | https://www.nature.com/articles/s41586-023-06221-2 |
UPDATED: 2023.11.28
Course List
Name | Source |
---|---|
AI4SCUP | bilibili |
FINISHED
Course List
Name | Source |
---|---|
CS224W: Machine Learning with Graphs | YouTube |